少女祈祷中...

题目

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例1:

  • 输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3

  • 输出:4

  • 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。 其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例2:

  • 输入:strs = [“10”, “0”, “1”], m = 1, n = 1
  • 输出:2
  • 解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

《代码随想录》算法公开课
力扣题目链接

思路

本题中strs 数组里的元素就是物品,每个物品都是一个!而m 和 n相当于是一个背包,两个维度的背包。

动态规划五步曲

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。

  1. 确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)

此时可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNumoneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  1. dp数组如何初始化

01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  1. 确定遍历顺序

一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!物品就是strs里的字符串,背包容量就是题目描述中的m和n

  1. 举例推导dp数组

以输入:[“10”,“0001”,“111001”,“1”,“0”],m = 3,n = 3为例

最后dp数组的状态如下所示:
0474-1

代码实现-二维数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m+1][n+1];
int oneNum, zeNum;
//分别统计数组中每个字符的0个数和1个数
for(String s : strs){
oneNum = 0;
zeNum = 0;
for(char c : s.toCharArray()){
if(c == '0') zeNum++;
else oneNum++;
}

for(int i = m; i >= zeNum; i--){
for(int j = n; j >= oneNum; j--){
dp[i][j] = Math.max(dp[i][j], dp[i-zeNum][j-oneNum] + 1);
}
}
}
return dp[m][n];
}
}